HMGA2-FOXL2 Axis Regulates Metastases and Epithelial-to-Mesenchymal Transition of Chemoresistant Gastric Cancer.
نویسندگان
چکیده
Purpose: Chemoresistance is the main cause of treatment failure in cancer and is associated with distant metastases and epithelial-to-mesenchymal transition (EMT). This study was aimed to explore the mechanism of metastases and EMT in chemoresistant gastric cancer.Experimental Design: A key molecular pathway was identified via gene profiling and a bioinformatic analysis in a chemoresistant gastric cancer model. The roles of FOXL2, HMGA2, and ITGA2 were validated via loss-of-function and gain-of-function experiments in vitro and in an orthotopic gastric cancer animal model. The regulation of FOXL2 by HMGA2 was explored via immunoprecipitation and luciferase reporter assays. The expression of these proteins in gastric cancer tissues was examined by IHC.Results: HMGA2 and FOXL2 directly regulated the metastasis and EMT of chemoresistant gastric cancer. The interaction between HMGA2 and pRb facilitated the transactivation of FOXL2 by E2F1, and ITGA2 was the downstream effector of the HMGA2-FOXL2 pathway. HMGA2, FOXL2, and ITGA2 were associated with the TNM classification and staging of gastric cancer and were increased in metastatic lymph nodes and distant metastases. Increased HMGA2, FOXL2, and ITGA2 levels were associated with reduced overall survival periods of patients with gastric cancer.Conclusions: This study demonstrated that the transactivation of FOXL2 driven by interactions between HMGA2 and pRb might exert critical effects on the metastases and EMT of chemoresistant gastric cancer. Blocking the HMGA2-FOXL2-ITGA2 pathway could serve as a new strategy for gastric cancer treatment. Clin Cancer Res; 23(13); 3461-73. ©2017 AACR.
منابع مشابه
HMGA2 regulates lung cancer proliferation and metastasis
BACKGROUND This study aimed to explore the effects of HMGA2 on cell proliferation and metastases in lung cancer and its underlying mechanism. METHODS HMGA2 expression in lung cancer tissues and its association with overall survival were analyzed based on data from a public database. The roles of HMGA2 were validated via loss-of-function and gain-of-function experiments in vitro. HMGA2 regulat...
متن کاملmiR-302a-5p/367-3p-HMGA2 axis regulates malignant processes during endometrial cancer development
BACKGROUND Metastasis is one of the main reasons for treatment failure in endometrial cancer. Notably, high mobility group AT-hook 2 (HMGA2) has been recognized as a driving factor of tumour metastasis. microRNAs (miRNAs) are powerful posttranscriptional regulators of HMGA2. METHODS The binding sites of miR-302a-5p and miR-367-3p on HMGA2 mRNA were identified using bioinformatics prediction s...
متن کاملNDRG2 Regulates the Expression of Genes Involved in Epithelial Mesenchymal Transition of Prostate Cancer Cells
Background: Metastasis is the main cause of prostate cancer (PCa) death. The inhibitory effect of N-myc downstream-regulated gene 2 (NDRG2) on the invasiveness properties of PCa cells has been demonstrated previously. However, its underlying mechanisms have not yet been investigated. The present study aimed to investigate the effects of NDRG2 overexpression on the expression of genes involved i...
متن کاملGNB2L1 and its O-GlcNAcylation regulates metastasis via modulating epithelial-mesenchymal transition in the chemoresistance of gastric cancer
GNB2L1 and its O-GlcNAcylation has been reported to play roles in gastric cancer metastasis. However, the roles of GNB2L1 in chemoresistance of gastric cancer has never been determined. In the present study, we found that GNB2L1 was downregulated in chemoresistant patients of gastric cancer, and observed the decrease of GNB2L1 in protein levels instead of mRNA levels in different chemoresistant...
متن کاملHMGA2 induces epithelial-to-mesenchymal transition in human hepatocellular carcinoma cells
Epithelial-to-mesenchymal transition (EMT) is an important event during tumorigenesis. The human high-mobility group A2 (HMGA2) is a chromatin-binding protein, which contains three AT-hook domains that enable its binding to the minor groove of DNA. HMGA2 organizes protein complexes on enhancers of various genes to regulate gene expression and cell differentiation. The HMGA2 protein has been rep...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Clinical cancer research : an official journal of the American Association for Cancer Research
دوره 23 13 شماره
صفحات -
تاریخ انتشار 2017